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The r e su l t s  of an expe r imen ta l  invest igat ion of the s t ruc tu re  of the i so the rma l  flow in a p e r m e -  
able pipe with s t r e a m  swir l ing at  the ent rance  are  p resen ted .  A wide range of var ia t ion  of the 

p a r a m e t e r s  and swir l ing  laws is  invest igated.  

The init ial  swir l ing  of a gas  s t r e a m  i s  widely used in h i g h - t e m p e r a t u r e  power  instal la t ions for  the 
organiza t ion  and i m p r o v e m e n t  of the working p r o c e s s  (vort ical  MHD g e n e r a t o r s ,  p l a s m a t r o n s ,  e tc . ) .  F o r  
these  conditions t h e r m a l  protec t ion  by injection can prove  to be the mos t  effect ive in a n u m b e r  of c a s e s .  
There  a re  p r e sen t ly  sufficiently detai led data in the l i t e ra tu re  on the s t ruc tu re  of in ternal  axial s t r e a m s  with 
injection [1, 2]. The re la t ionsh ips  of the flow in pipes  under  the conditions of injection into a swir led s t r e a m  
are  p rac t i ca l ly  absent .  

The p r e sen t  r e p o r t  is devoted to an expe r imen ta l  invest igat ion of the local ,  in tegra l ,  and turbulent  
c h a r a c t e r i s t i c s  of the i s o t h e r m a l  swir led  flow in an open cyl indr ica l  pipe 80 m m  in d i ame te r  and 13.75 d i am-  
e t e r s  long. A deta i led descr ip t ion  of the expe r imen ta l  instal la t ion is given in [3-5]. The s t r e a m  was probed  
using t h e r m o a n e m o m e t e r s  and p n e u m o m e t r i c  p r e s s u r e  pickups which were  inse r t ed  into specia l  openings made 
in the m e a s u r e m e n t  sec t ion ,  which cons i s t s  of a s epa ra t e  porous  spec imen with a jacket  and an individual sup-  
ply of the injected gas .  In the invest igat ions  this  section was mounted at d is tances  of 3.06, 5.76, 8.46, and 
12.51 d i a m e t e r s  f r o m  the swir l ing  s ou rce s .  The method of conducting the expe r imen t s  and t rea t ing  the t e s t  
data  is s i m i l a r  to that  fo r  the flow of a swir led  s t r e a m  in an i m p e r m e a b l e  channel and is  p re sen ted  in detail  in 
[6-11]. We note that  the e r r o r  in de te rmin ing  the ve loci t ies  is i5%,  for  the pulsat ion intensi ty it is ~10%, and 
fo r  the co r re l a t ions  it  is ~20%. The sur face  f r ic t ion was de te rmined  on the ba s i s  of a t r ans fo rmat ion  of the 
angular  momen tum and the longitudinal pro jec t ion  of the total  momen tum along the length of the channel,  ca l -  
culated f r o m  the known values  of the local  p a r a m e t e r s  (Eu le r ' s  f i r s t  and second theorems)  [6]. The e r r o r  of 
such an approach  does not exceed  =~10%. Finishing t e s t s  conducted under  i so the rma l  and non iso thermal  con- 
ditions showed that  the s y s t e m  of channel and m e a s u r e m e n t  sect ion sa t i s f i e s  the conditions of technical  
smoothness  [4]. 

The init ial  swir l ing  of the s t r e a m  was accompl i shed  by a vane s w i r l e r  with a cen t ra l  body. The vanes  
of the s w i r l e r  were  laid out with r e s p e c t  to a power  law tan 9 = tan ~ i (R/ r )  n. In the t e s t s  the main  p a r a m e t e r s  
of the sw i r l e r  were  var ied  in the l imi t s  of ~i = 15-60~ and n = 1-3. In o rde r  to e l iminate  the penet ra t ion  of the 
swi r led  s t r e a m  into the injection cavity of the f i r s t  sec t ion ,  an i m p e r m e a b l e  cyl indr ica l  channel with a re la t ive  
length of about one d i a m e t e r  was mounted d i rec t ly  behind the sw i r l e r .  The value of the coordinate  ~ is  given 
below with a l lowance fo r  this  sec t ion ,  while the value of the initial  swir l ing intensity 4~,e n [6] co r r e sponds  to 
the cut of the i m p e r m e a b l e  sect ion.  

The t e s t s  were  conducted under  i so the rma l  conditions with a i r  injection into the swir led  s t r e a m ,  An 
approx imate ly  constant  value of the m a s s  f low-ra te  density of the injected a i r  along the length of the channel 
was  main ta ined  in all  the e x p e r i m e n t s .  The r anges  of va r i a t ion  of the m a i n  p a r a m e t e r s  were  B .  = (1.17-10.06) - 
10 -3, bx = 1.32-4.62,  bx6 = 0.72-3.74, b s  = 0.77-3.88, and Reden  = (0.7-1.3) .10 ' .  

L o c a l  a n d  I n t e g r a l  F l o w  P a r a m e t e r s  

An ana lys i s  shows that  the s t ruc tu re  of a swi r led  s t r e a m  under  the conditions of injection into it i s  
de te rmined  by three  main  p a r a m e t e r s :  the swir l ing intensi ty r  the Reynolds n u m b e r  Re d, and the injection 
p a r a m e t e r .  Since the re la t ive  values  of the local ,  in tegra l ,  and turbulent  c h a r a c t e r i s t i c s  of a swir led  s t r e a m  
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Fig.  l .  Variat ion of axial (a, b) and rotat ional  (c, d) veloci ty  
components  along length of channel.  Swir le r  with r = 45e 
and n = 3  (~*en =0.83) ;  ~ = 3 . 0 6  (a ,b ) ;  x =  8.46 (c ,d ) ;  
1) B . . 1 0 3  = 0; 2) 3.34; 3) 6.68; 4) 10.03. Wx, w~0, m / s e c .  

a re  s e l f - s i m i l a r  with r e s pec t  to the Reynolds number  Red [6], in this case  the flow s t ruc tu re  will be c h a r a c -  
t e r i zed  by only two p a r a m e t e r s .  

The t r an s fo rm a t i on  of the axial  and rota t ional  veloci ty  components  along the length of the channel at 
di f ferent  values  of the injection p a r a m e t e r  B .  is p re sen ted  in Fig.  1. The slight i nc rease  in the axial  veloci ty 
in the init ial  c r o s s  sec t ions  of the channel (Fig. la) in compar i son  with that for  an i m p e r m e a b l e  channel is  
explained by the reduction of sur face  f r ic t ion due to the injection. La te r  on (Fig. lb) ,  the fo rmat ion  of the w x 
prof i le  is  conditioned by two main f ac to r s :  an inc rease  in the m a s s  of gas moving in the channel,  which leads 
to f a s t e r  at tenuation of the swir l ing,  and the reduction of sur face  f r ic t ion.  F o r  these  r ea sons  the ma x imu m 
value of the axial  veloci ty  grows in absolute value and shifts  into the axial  region of the channel;  the ful lness  
of the w x prof i le  ove r  a c r o s s  sect ion of the channel gradual ly  i n c r e a s e s  in the p r o c e s s .  

As the ana lys i s  showed, in the invest igated range of var ia t ion  of the control l ing p a r a m e t e r s  the re la t ive  
values  of the m a x i m u m  axial  and rota t ional  ve loci t ies  a re  uniquely de te rmined  by the. swir l ing p a r a m e t e r  ~ , .  
The supply of additional m a s s  (an inc rease  in P0Wx0 and p0wy0) and the dec rea se  in swir l ing intensi ty ~ ,  (a de-  
c r e a s e  in P0Wx0 and P0WZ0) approx imate ly  compensa te  for  each o ther  under  the conditions of the expe r imen t ,  so 
that the t e s t  data for  impe rmeab le  and p e r m e a b l e  pipes p rac t i ca l ly  coincide with each  other .  Thus,  for  calcu-  
la t ions in the region of ~ .  > 0.23 one can use the equations [6] 

1 . 8 ~  ~ 
p~176 ----- 0.95-F ReO,2 ' P~176 = 0.74 + 5"75~5~ , (1) 

in which the values  of pu, Red, and @, a re  de te rmined  with allowance fo r  the supply of an additional m a s s  of 
gas .  

The rota t ional  veloci ty in the init ial  c r o s s  sect ions of the channel grows slightly under  the action of in- 
ject ion (Fig. l c ,  d), which is also due t;o the reduction of su r face  f r ic t ion.  In this case  the radius  of the m a x i -  
m u m  value of the rotat ional  veloci ty  (r~0max) shif ts  into the axial  region (Fig. l c ,  d). An analys is  of the initial  
r e su l t s  of the expe r imen t s  shows that  this  shift  is due only to the dec rea se  in the swir l ing intensi ty owing to 
injection.  The n u m e r i c a l  value of ~ ' r  is  uniquely de te rmined  by the value of ~ ,  and in the region of ~ ,  > 
0.44 it can be calcula ted f rom the equation obtained for  an impe rmeab le  pipe [6]: 

rwm~x -- 0.19(1 -+- 2q5,). (2) 
R 

An effect  analogous to d iaphragming (narrowing) of the exit  c r o s s  section of the channel develops under 
conditions of injection with re la t ive ly  weak swir l ing (0.18 -< ~ .  - 0.44). In this  case  the calculat ing equation 
has  the fo rm 

Y~Pmax = 0.57~b $ .~ 0.1. (3) 
R 

In Eqs.  (2) and (3) the value of ~ ,  is  a lso de te rmined  with allowance for  injection. 

The in tegra l  swir l Ing p a r a m e t e r  ~ ,  is the m o s t  impor tan t  c h a r a c t e r i s t i c ,  and in a n u m b e r  of c a se s ,  as 
shown above,  it uniquely de t e rmines  the influence of injection on the flow s t ruc tu re .  Trea tmen t  of the tes t  
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data showed that  fo r  the inves t igated condit ions,  jus t  as for  an i m p e r m e a b l e  channel,  the attenuation of the 
swir l ing  obeys the exponential  dependence 

r  = ~, .  enexp ( ~  px-), (4) 
.76 where  p = P0(1 + 8 0 B . ~ e ~ ) o  

F o r  flow in an i m p e r m e a b l e  channel the exponent is  obtained on the b a s i s  of an analys is  of the t es t  data 
of [6] and is de te rmined  f rom the equations 

X ~ xi, qb, = ~ ,  enexp (--  Po~), 

x > x , ,  r  = ~.r Pot) X t -  Po2X], 

xt_= ~ 4.7~2.en+ 14.4 ~ ,  en + 9, (4a) 

P0t" 10~ = ~0-47~*~en+ l'44qb*en+ 1.75, P02" 102 = 1,9. 

Jus t  as  fo r  an i m p e r m e a b l e  channel,  fo r  injection into a swir led  s t r e a m  the connection between the 
swir l ing p a r a m e t e r s  ~ ,  and # ,  which is  used to solve the in tegra l  momen tum equations [7], has the fo rm of 
a power - l aw  equation,  

. ~ = B~, b, (~) 

where the values of B and b are determined by the injection parameter bx: 

B ---- B o (1 - -  0r0Sbx), b = b o (I - -  0.06b~). (6) 

The quanti t ies  B 0 and b 0 r e p r e s e n t  the values  of the p a r a m e t e r s  in the absence of injection and with the 
analogous g e o m e t r i c a l  conditions (d, I/d) and a re  de te rmined  f r o m  the data p r e sen t ed  in [8]. 

One of the impor tan t  p r o p e r t i e s  of in terna l  flow swir l ing  d i scovered  in the p re sen t  invest igat ion is the 
un iversa l  one- to-one  connection between the swir l ing p a r a m e t e r  ~ ,  and the l imit ing angle of s t r e a m  swir l ing 
at the sur face  of the channel ,  tan ew,  which c h a r a c t e r i z e s  the re la t ive  curva tu re  of the s t r e a m l i n e s  of the 
t rans la t iona l  - rotat ional  mot ion.  F o r  the flow of a swir led  s t r e a m  in an i m p e r m e a b l e  and a pe rmeab le  cyl in-  
d r ica l  channel  th i s  connection has  the f o r m  of a power - l aw  equation,  

tg r = 1.2r ~ (7) 

which de t e rmines  the ve ry  impor tan t  connection between the local  and in tegra l  p a r a m e t e r s  of an in ternal  
swir led  s t r e a m .  

With a known law of swir l ing attenuation and the connection (7) one can also find an express ion  for  the 
re la t ive  cu rva tu re  of the s t r e a m l i n e s  of the t r ans la t iona l  - ro ta t ional  motion n e a r  the sur face  of the channel 
f r o m  the equation 

'l__v_~ = (I + ctg 2 %,)' .5 
_ _  ( 8 )  

R [ 1 + ctg2 % + ctg~(p~ ( - P ) 2 J  ~  

where  p = 0.784p 0, fo r  ~ < ~i and p = 0.784p02 for  ~ > x2. 

An ana lys i s  of Eqs .  (4a) shows that the condition tan ~0 w >> p /2  is sa t i s f ied  in a wide range of var ia t ion  of 
the control l ing p a r a m e t e r s .  This means  that  f o r  p r ac t i ca l  calcula t ions  one can use the s impl i f ied  equation 

'lw _ 1 + ctg z % .  (8a) 
R 

R e g i o n  o f  B o u n d a r y  F l o w  

F o r  "pure"  c i r c u l a r  motion of the s t r e a m  the sum of" the quanti t ies  cha rac t e r i z ing  the generat ion and d is -  
s ipat ion of turbulence ene rgy  is  approx imate ly  equal  to ze ro  n e a r  the sur face  of the channel [9]. This means  
that the re la t ions  de te rmined  by the Prandt l  hypothes is  a re  sa t i s f ied  h e r e ,  The t rans la t iona l  - rotat ional  
mot ion of the s t r e a m  can a lso  be  reduced  to an ana lys i s  of a "pure ly"  c i r c u l a r  s t r e a m  by r ep re sen t ing  it as  a 
collect ion of s epa ra t e  ro ta t ions  about an ins tantaneous veloci ty  cen te r ,  whieh is  d e t e r m i n e d  by Eq. (8a). In this 
case  the exp re s s ion  fo r  the Prandt l  hypothesis  in the coordinate  s y s t e m  ~, ~, 7/ (see Sec. 3) will have the f o r m  

/ 0w~ ~2 
"~'~ =Pl~* ~--0n(! " ( 9 )  
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Fig .  2. Universa l  p rof i l e  of total  s t r e a m  veloc i ty  in 
region of boundary  flow (n = 3 for  1-4): 1) cp i = 60 ~ 
B , . 1 0 3 =  9.95, bx6 = 2.19, ~ , =  0.57; 2) 45 ~ , 3.34, 
0.83, 0.57; 3) 45 ~ , 6.68, 1.72, 0.58; 4) 45 ~ 10.03, 

2.37, 0.53; 1 ' , 2 ' ) b x 5  = 0, @ , =  0; 3') bx5 = 0, ~ , =  
0.55. 

Since n e a r  the sur face  of the channel the s t r e a m  swir l ing  angle v a r i e s  quite ins ign i f ican t ly ,  under  a s -  
sumpt ions  analogous to those given in [10] we can obtain f rom Eq. (9) the e x p r e s s i o n  

9" = I__ l n ~  + const, (10) 

f rom which i t  follows that outside the region  of the l a m i n a r  s u b l a y e r  in the coord ina tes  ~E,  ~lE the va r ia t ion  in 
the total  ve loc i ty  nea r  the sur face  of the channel mus t  obey a loga r i thmic  law. The region where the influence 
of the wall  on the s t r e a m  s t ruc tu re  is  man i fes t ed  and the l oga r i t hmic  law is s a t i s f i ed  will  hencefor th  be ca l led  
the region of boundary flow. This region is loca ted  a lmos t  up to the rad ius  of the maximum value of the total 
ve loc i ty .  

The f i r s t  s tep was the inves t igat ion of the laws of boundary flow in an i m p e r m e a b l e  cy l ind r i ca l  channel 
with the same g e o m e t r i c a l  s ize .  As a r e s u l t ,  we obtained the equation 

~z = [5.5 ~ 4.65 (r - -  0.07) 0 .26] + [5.75~3,36 (r _ 0.07) 0 .3] In ~z, (11) 

which can be used for  a wider  range of va r i a t ion  of the con t ro l l ing  p a r a m e t e r s  than that given in the au thors '  
r e p o r t  [61. 

An ana lys i s  of the t es t  data obtained for  the p e r m e a b l e  channel al lowed us to conclude that in the coord i -  
nate sy s t em * q~E, ~IE the total  ve loci ty  d i s t r ibu t ion  in the region of boundary flow p r a c t i c a l l y  coincides  with the 
ca lcu la ted  data obtained f rom Eq. (11). This conclusion is  conf i rmed  by the pa r t i a l  r e s u l t s  of the invest igat ion 
p r e s e n t e d  in F ig .  2. The l a t t e r  is  in ag reemen t  with r e s u l t s  obtained for  axia l  flow at a pe rmeab le  plate  [10]. 

P u l s a t i o n  I n t e n s i t y  

The m i c r o s t r u c t u r e  of the swi r l ed  s t r e a m  was de t e r m i ne d  in the coordina te  sy s t em [ ,  ~, ~ connected with 
a he l i ca l  s t r e a m l i n e  [11], which is due to the methodologica l  p r o p e r t i e s  of the pe r fo rmance  of the expe r imen t s  
using a t h e r m o a n e m o m e t e r .  Here the ~ coordina te  co inc ides  with the d i rec t ion  of the total  veloci ty  while ~ and 

are  pe rpend i cu l a r  to i t  (~ is  the r ad ia l  coo rd ina t e ) .  

The r e su l t s  of a de te rmina t ion  of the three  components  of the pulsat ion intensi ty  a re  p r e sen t ed  in F ig .  3. 
Jus t  as in axial  flow at a p la te ,  the t r a n s v e r s e  flow f rom the channel wall  p romotes  an i n c r e a s e  in the longi-  
tudinal and t r a n s v e r s e  components  of the pulsa t ions  n e a r  the sur face  of the channel .  The r ad ia l  component 
grows ove r  a lmos t  the en t i r e  c r o s s  sect ion of the channel .  

The ove ra l l  c h a r a c t e r  of the r a d i a l  va r i a t ion  of the components  of the pulsat ion in tens i ty  (a curve with a 
minimum) is  analogous to that for  sw i r l ed  flow in an i m p e r m e a b l e  channel [11] and ind ica tes  the s imul taneous  
ex i s tence  of flow reg ions  with the act ive and conse rva t ive  action of cent r i fugal  m a s s  f o r c e s .  This means  that 
the co r r e spond ing  t e r m s  in the equation of turbulent  energy  ba lance  must  change sign at the point of t h e p u l s a -  
tion min imum.  
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Fig.  3. Intensi ty of longitudinal (e~), t r a n s v e r s e  (eL), and 
radia l  ( ~ )  pulsat ions  in channel.  Swir le r  with ~i = 45~ n = 3, 

= 8.46; 1) B ,  = 0; 2) 0.0033; 3) 0.0066; 4) 0.01. 

F r i c t i o n  L a w  a n d  F o r m  P a r a m e t e r s  o f  S t r e a m  

The tes t  data on sur face  fr ic t ion were  genera l i zed  in the fo rm of a re la t ive  law using the pr inciple  of 
superpos i t ions  of s epa ra t e  act ions (injection and swirl ing):  

Here it was assumed that the influence of swirling on the surface friction is determined by the equation 

% _-- --2.16q52, + 3.42q~, +0.6 ;  r  (13) 

which was obtained in [8] for  flow in an impe rmeab le  channel in a wide range of var ia t ion  of the control l ing 
p a r a m e t e r s .  

The r e su l t s  of a de terminat ion  of the re la t ive  function ~inj,  which allows for  the influence of injection 
on the sur face  f r ic t ion ,  a re  p r e sen t ed  in Fig.  4 and are  sa t i s fac tor i ly  genera l ized  by the equation 

xI~in j = (11 --0"llb=~Z 
+ O. 1 l b x /  " (14) 

Thus,  the f r ic t ion  law fo r  the i s o t h e r m a l  flow of a swir led  s t r e a m  in a pipe under conditions of uniform 
injection will have the form 

c=2 Co=2 (--2"16q~2" + 3.42q~, + 0.6)(11 ~ 0.1 l b ~ +  0.1 lb= )2 (15) 

and can be used to solve the in tegra l  momen tum equations obtained by differentiat ion of the different ia l  equa-  
tions of motion over  the en t i re  c r o s s  section of the channel (see the approach p resen ted  in [8]). Here  C0x/2 is 
the "s tandard"  fr ic t ion law for  q u a s i - i s o t h e r m a l  nongradient  flow at  a p la te  [1] o 

Because  of the very  weak var ia t ion  in the angle of s t r e a m  swir l ing n e a r  the surface  of the channel [6], 
f r o m  Eq. (15) we c a n d e t e r m i n e  the tangential  f r ic t ional  s t r e s s e s  ~r and ~Ew f r o m  the equations 

! ' i n J ~ o - - ,  ~--4 v--d I 
_ ~ ~  -1 ~ - 2  . - s  ~ - s  t 

0,8 - ~  I 0 - - 3  � 9  v - - m I  
! ~_"~.~l  ~ - - 7  �9 - t t l  

vvi= ~"-i __L__Z_22" 
O r 2 8 4 Z5 x 

Fig .  4. Relat ive injection function for  s t r e a m  swir l ing in 
a p i p e :  1) B , - 1 0 3  = 3.31; 2) 3.34; 3) 6.63; sw i r l e r  4) 
B , . 1 0 3 =  6.68; swi r l e rS)  B ,  -10 a = 9.95, r = 60~ n = 3; 
6) 10.03, 45 ~ , and 3, respect ively. ;  7) B , . 1 0 3 =  3.33; 
8) 3.36; 9) 6.69; s w i r t e r  10) B ,  .103 = 6.71; s w i r l e r  
11) B , . 1 0 3 =  10.0, q~i =45~ n = 1; 12) 10.06, 15 ~ , and 3. 
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and also the cor responding  coeff icients  of f r ic t ion.  It should be noted that the approximate  equali ty Cx/2 
c~0/2 occu r s  in this c a se ,  since the ra t io  F0/(wx0Rtan ~0w) is p rac t i ca l ly  equal to unity. 

At the same t ime ,  we found the re la t ive  injection functions ~inj 6 and ein j s '  while the resu l t s  of the 
genera l iza t ion  were  de te rmined  by the equations 

: [/ 1--0.13bx~ ~2, einjs ~- (l~-_0:lSbs ~2. (16) 
~ir~6 \ 1-~0.13b~a ] 1-~0.15bs] 

The influence of injection on the fo rm p a r a m e t e r s  of the swir led fl0w was found on the ba s i s  of the p r in -  
ciple of superpos i t ions  of separa te  act ions (injection and swirl ing):  

Here  the values  of Hx~ and Hx~0 in the absence  of injection were  de te rmined  on the bas i s  of the equations p r e -  
sented in [8] for  flow in an i m p e r m e a b l e  channel.  The calculat ing equations de termining the influence of in jec-  
tion on the f o r m  p a r a m e t e r s  have the fo rm 

H inj = 1 -~ 0.05b:, /4inJ = 1 -~ 0.066bx (18) X - '*  Xq0 

and can be used to solve the in tegra l  momen tum equations.  

The r e su l t s  p r e sen t ed  in this a r t ic le  r evea l  the physica l  ba se s  of the p r o c e s s  of flow of a swir led  s t r e a m  
in a p e r m e a b l e  cyl indr ica l  channel and compr i se  a bas i s  for  the development  of an in tegra l  method of ca lcu-  
lat ing such flows. 

NOTA TION 

B .  = (PV)w/(PU)en, permeab i l i t y  p a r a m e t e r ;  b x = (PV)w/P0Wx0; bx6 = [(PV)w/P0Wx0](2/c06); b 3 = [(PV)w/ 
P0Wx0](2/C0x), injection p a r a m e t e r s ;  Cx/2 = Txw/P0Wx20; C0s/ -2  = 0.0288 Re-~ c~0/2 = T~owR/P0Wx0F0; 
Co6/2 = 0.0128Re~ *-~ coefficients  of f r ic t ion;  d = dg/2R,  re la t ive  d i ame te r  of conical exit  d iaphragm;  hx, 
hxep, fo rm p a r a m e t e r s  of s t r e a m ;  l /d,  re la t ive  length of channel;  n, index of intensity of twisting of sw i r l e r  
vanes ;  R, radius  of channel;  Re** ** = = P0Wx06x /p; Re~* == PoWxo6**/p; Re d = pu2R/P; Rede n (PU)en2R/p; 
Re s = P0Wy~0Xs/P, Reynolds num ber s ;  r ,  ~o, x,  cyl indr ical  coord ina tes ;  ~ ~ x /2R ,  re la t ive  coordinate;  Xs, 
length of hel ical  line along surface  of channel;  �9 = M/K~R;  ~ .  = M/K~R, p resen t  intensi ty of swirl ing; M, 
K1, angular  arid longitudinal momenta ;  K~,  longitudinal pro jec t ion  of total  momentum of s t r e a m ;  ~*en,  mean 
t rue  intensi ty of swir l ing at exit  f rom swi r l e r ;  w, veloci ty;  F 0, c i rculat ion of rotat ional  veloci ty  at outer  l imi t  

�9 * 6"* of region of boundary flow; 6 x , , momen tum thickness  calcula ted ove r  ent i re  channel c r o s s  section and in 
region of boundary  flow, r e spec t ive ly ;  p, densi ty;  q~, q~i, p r e sen t  and initial  (at r = R) angles of vane twisting; 

�9 = (2p/(pv) w) [V0"zw/p) + (w~/P)(pv} w - ~{ r~w/p],  f r ic t ional  s t r e s s  at channel wall;  gi = w ~ w  E (i = ~, ~, ~7); ~0y 

77 Z = (y/vPf~y:w/d;  y, d is tance  f rom wall.  Indices:  en, entrance;  Z, total;  0, max imum conditions; 8, con-  

dit ions at outer  l imi t  of region of boundary flow. 
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M A T H E M A T I C A L  A N A L Y S I S  OF W H I R L E D  T U R B U L E N T  

F L O W  T H R O U G H  A P I P E  

V.  V .  T r e t ' y a k o v  a n d  V.  I .  Y a g o d k i n  UDC 532.54204 

The effect  of rotat ion of the s t r eam on the development of turbulent  flow in a pipe is analyzed by 
a numer ica l  method.  Calculated distr ibut ions of average turbulence velocity and energy are  
compared  with exper imenta l  data. 

Study of whir led turbulent  flow is ve ry  important .  Owing to the t remendous  complexity of such a flow, 
however ,  it has so far  been studied less  extensively  than s imi l a r  flow without whirling. This applies espe-  
c ia l ly  to flow through pipes.  Here will be p resen ted  the resu l t s  of numer ica l  calculations per ta ining to whir led 
turbulent  flow through a cyl indr ical  pipe, calculat ions based  on the two-pa rame t r i c  k -  e and k -  W models  of 
turbulence [1]. Various authors  have used these models  e a r l i e r  for  calculating the flow in boundary l aye r s ,  in 
f ree  or  bounded j e t s ,  and through channels of in t r icate  shapes.  They compared  the theore t ica l  and exper imen-  
tal  data on the bas is  of average flow cha rac t e r i s t i c s  (velocity prof i les ,  size and location of the rec i rcu la t ion  
zone, etc .) .  In [2], e . g . ,  a compar ison is  shown between calculated and m easu red  prof i les  of average velocity 
along an annular  channel.  This is par t ly  at tr ibutable to the fact that published exper imenta l  data on whirled 
flow are  incomplete in t e r m s  of turbulence cha rac t e r i s t i c s .  F o r  this r eason ,  we have selected for  compar ison 
the data in [3] containing not only the prof i les  of the components of average veloci ty and the p r e s s u r e  d is t r ibu-  
t ions along the pipe wall as well as along the pipe axis ,  but also data on the distribution of and the corre la t ion  
between the intensi t ies  of the th ree  components of velocity fluctuations in the s t r eam.  

The sys tem of equations descr ibing a steady turbulent  motion of an incompress ib le  fluid through a pipe, 
under  the assumption of a rotat ionally symmet r i c  flow without ex terna l  body fo rces  acting and with constant 
molecu la r  t r a n s f e r  coeff ic ients ,  can be wri t ten in cyl indr ical  coordinates  as 

Ov~ 1 0 
o--; + - -  - -  (rv3 -- o, r ar 

OGV~oz ~ . . . .  1 0 r v ~  0 [ Ov~l 2 0 [ ,Ov~]+__~O [ Ov~l , vr v~ 1 Op 
r Or Oz (v + v,) Oz J + - -  - -  r (v + v# -~r (v + vt) 2 (v -~ vt) -~- + r Or Oz Or J -7-  p Or 

(1) 

Oz + r Or 0-z- (v + vt) Oz I -~ r (v + ~,) r , r Or Oz]  p Oz [ (v+v~)  r Or Or J 

r Or Oz (~ + v t )  Oz J + - r  --Or r ( v + v ~ ) T  r Or [(~ +v t )  rvd' 

where v z, v r ,  and v 0 a re  t i m e - a v e r a g e d  components of veloci ty .  

Trans la ted  f rom Inzhenerno-Fiz icheski i  Zhurnal ,  V01. 37, No. 2, pp. 254-259, August, 1979. Original 
a r t ic le  submitted September  5, 1978. 
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